Aging and the Brain: Roadmaps to Therapeutics

The Shiley-Marcos Alzheimer's Disease Research Center and Center for Brain Health and Memory Disorders at UC San Diego

James Brewer, M.D., Ph.D. Chair, Department of Neurosciences Director, Shiley-Marcos Alzheimer's Disease Research Center Professor, Departments of Neurosciences and Radiology UC San Diego Health

Outline

- Background:
 - UC San Diego Neurosciences
 - Research and Clinical Partnership for Advancing Knowledge and Care for Patients with Alzheimer's Disease and Related Disorders
 - The Shiley-Marcos Alzheimer's Disease Research Center
 - The Alzheimer's Disease Cooperative Study
 - The UC San Diego Center for Brain Health and Memory Disorders
- New Tools for Discovery
- New Tools for Care
- The Promise of the Future

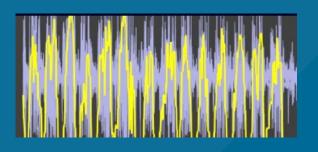
UC San Diego Neurosciences

A Nation-Leading Department with Bold Ideas and an Ambitious Vision for the Future

Fueled by creative and innovative concepts born from cross-fertilization

Educators

UC San Diego Neurosciences Five Departmental Hubs of Innovation


NeuroGenetics: Unlocking the Power of the Genome toward New Neurodiagnostics and Neurotherapeutics

Metabolism, Aging, and Neurodegeneration

NeuroRecovery Imp Dec Eng

Implantable Devices: Decoding Brain Signals and Engineering New Brain-Machine Interfaces

Imaging the Brain and Nervous System-In Vivo Probes and Reporters

MEMORY DISORDERS RESEARCH

UCSD Shiley-Marcos ADRC

Administrative Core

Director James Brewer, MD, PhD Associate Directors David Salmon, PhD; Douglas Galasko, MD Administrator Emily Little, MPH Internal & External Advisory Committees

Community Advisory Board

Clinical Core Leader: Douglas Galasko, MD Co-Leader: Diane Jacobs, PhD Faculty: Howard Feldman, MD; Irene Litvan, MD;	Data/Biostatistics Core Leader: Steve Edland, PhD Co-Leader: Jingjing Zou, PhD	Biomarker Core Leader: Douglas Galasko, MD Co-Leader: Paula Desplats, PhD Co-Leader: Emilie Reas, PhD Faculty: Vivian Hook, PhD
Jody Corey-Bloom, MD, PhD; Mark Bondi, PhD; Guerry Peavy, PhD; David Salmon, PhD; Gabriel Léger, MD; Elizabeth Bevins, MD, PhD	Neuropathology Core Co-Leader: Subhojit Roy, MD, PhD Faculty: David Coughlin, MD; Vanessa Goodwill, MD	iPSC Core Leader: Jerome Mertens, PhD Co-Leader: Fred Gage, PhD Faculty: Jenn Page, PhD Christopher Glass, MD, PhD
Outreach, Recruitment, Engagement Core (ORE) Leader: Guerry Peavy, PhD Co-Leader: Sarah Banks, PhD	Latino Core Leader: Tamar Gollan, PhD Co-Leader: Zvinka Zlatar, PhD Co-Leader: Hector González, PhD	Research Education Component (REC) Leader: Mark Bondi, PhD; Co-Leader: Vivian Hook, PhD

Biomarker

Desplats-----Galasko-----Reas

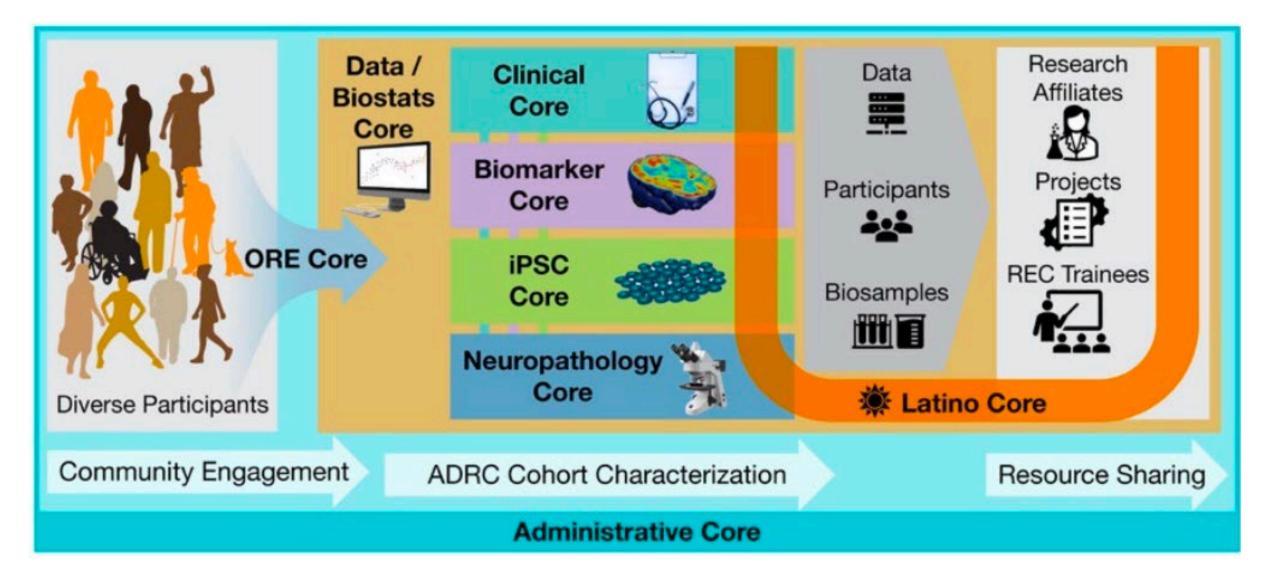
Neuropathology


Coughlin ----- Roy ----- Goodwill

Latino Core

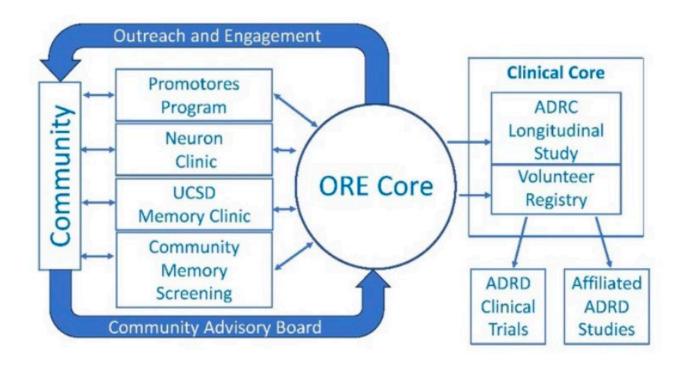
Gonzàlez-----Zlattar-----Gollan

Data Core

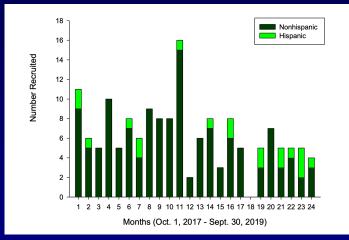

Edland ----- Zou

iPSC Core

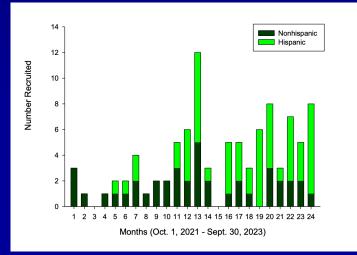
Gage ----- Mertens


Overall Aims of the Center

Outreach Recruitment and Engagement


- Recruitment Goals for Volunteer Registry
 - 200 new enrollees per year
- Seek to engage new partners to boost diversity of socioeconomic status (SES)
 - e.g. Serving Seniors

D2. ORE Core Procedures

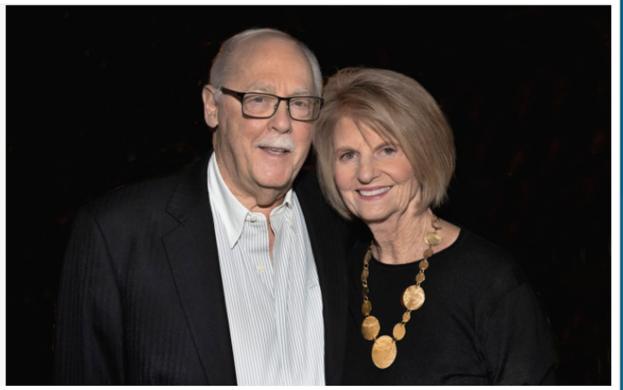


ADRC – Evolving our Culture

Latino Recruitment 2017-2019

Latino Recruitment 2021-2023

UC San Diego News Center


January 24, 2022

With a \$50 Million Gift, USC and UC San Diego Join Forces in Alzheimer's Research

A transformative donation from the Epstein Family Foundation will accelerate Alzheimer's research at the two universities in a push to find better treatments and a cure

Dan and Phyllis Epstein

A joint gift to the University of Southern California (USC) and the University of California San Diego totaling \$50 million from the Epstein Family Foundation will drive Alzheimer's research and accelerate the search for treatments and a cure.

THE ALZHEIMER'S DISEASE COOPERATIVE STUDY

Established 1991-

Serves as an academic-based Clinical Trial Network that advances the state of the art in ADRD trials

Pushes forward new ideas, often outside the standard dogma, yielding data collection for proof of concept Advances innovative trial design and outcome measures Open to trying new therapeutics without patentability or high profit potential Guided only by the science... *To boldly go where pharma can't or won't*

ADCS Current Portfolio (n=8) NIA NON-NIA

SCHOOL OF MEDICINE

UC San Diego

Active Projects

Study	Funding	Project Period and Amount
VIVA-MIND Phase 2A-B	NIA R01, Vivoryon Therapeutics	Apr2019-Jun2025 \$21M
Benfotiamine Phase 2A-2B	NIA R01	Jul2022-Jun2028 \$42.5M
NeuroRiderVR Phase 2	NIA R01	Mar2020-Feb2026 \$6.9M
Sex/Gender Differences	Alz Assoc	Oct2023-Sep2026 \$250K
Legacy RF1	NIA RF1	Sep2024-Aug2027 \$3.3M
HALT-AD	Mente Sana add-on to NIA R61/R33 AG077969 UCSD & Health System	Jan2024-Dec208 \$120K
CAN-THUMBS UP	Canadian Institutes of Health Research	Apr2019-Mar2029 \$1.1M
Asian Cohort for Alzheimer's Disease (ACAD)	NIA (U19)	Jul2023-Jun2028 \$2.8M

Upcoming Clinical Trials: Grants Submitted

Study	Funding/Partner	Submission Date and Amount	Phase
ALX-001 Allyx: Tim Siegert Yale: Steve Strittmatter Contact PI: H Feldman	NIA/Allyx R01	Oct 2024 \$37.9M	Phase 1B and 2A n=150
Atomoxetine (P4P) Emory: Alan Levey, David Weinshenker Contact PI: H Feldman	Epstein, NIA R01	Oct 2024 \$17.6M	Phase 2A-B Ph 2A n=40 Ph 2B TBC
POSIT Stanford: Vankee Lin Contact PI: J Pa	NIA R01	Oct 2024 \$31.4M	Phase 3 n=788
SMARRTER UCSF: Kristine Yaffe Contact PI: J Pa	NIA R01	Feb 2025 \$44.5M	Phase 2 n=1032

Upcoming Clinical Trials in Development

Study	Funding/Partner	Submission Date	Phase
HER-CARE	Wellcome LEAP	Pending submission Apr 2025	Target trial emulation
P4P Platform Trial	Epstein, NIA R01	~ 2025	Phase 2A Multiple arms n=250

Alzheimer's Research & Therapy

Posiphen to lower amyloid precursor protein Phase 1B trial-----onto Phase 3

Galasko *et al. Alzheimer's Research & Therapy* (2024) 16:151 https://doi.org/10.1186/s13195-024-01490-z

Nicotinamide to lower phosphorylated tau Phase 2A trial----problems with bioavailability Grill J et al Neurology 2025 Jan 14;104(1):e210152. Ketron G et al Alz Res &Therapy 2025

Phase 2 trial of Prazosin in preparation for submission Drs. Elaine Peskind & Dr. Murray Raskind

<u>Benefits on</u> <u>levels of</u> <u>agitation</u> <u>Preliminary data</u>

BMC

Feldman HH et al Under revision Ph 2 trial-----negative clinical and biomarker results

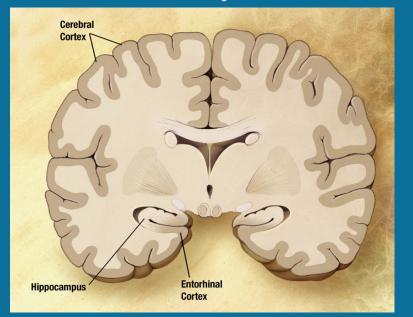
Primary and Usual Care papers in press Phase 2-3 trial on Aerobic training vs Stretching and balance Lead authors: Dr. Laura Baker (primary) & Dr. Aladdin Shadyab (usual care)

Alzheimer's & Dementia

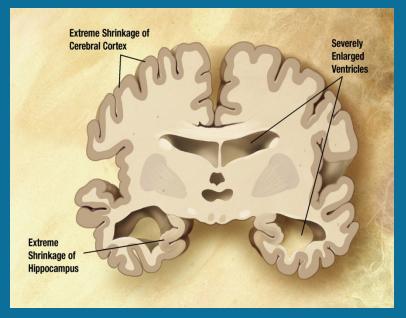
MEMORY DISORDERS CLINICAL CARE

The UC San Diego Center for Brain Health and Memory Disorders

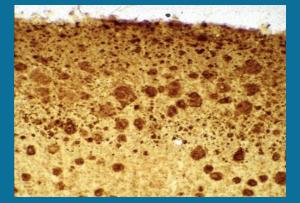
- Established to Provide State-ofthe-Art Brain Health Care and Support
 - Considering both the Aging Patient and Families/Caregivers
- Access to Clinical Trials and Research Advances
- Safe Delivery of New Therapeutics

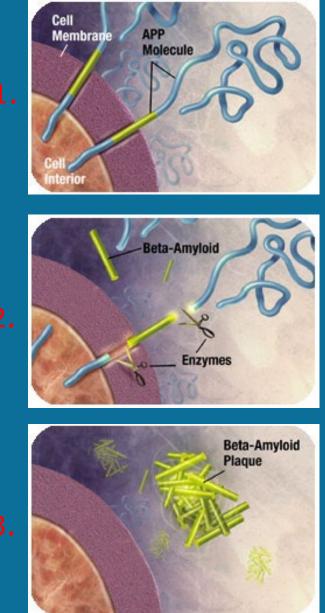

The UC San Diego Center for Brain Health and Memory Disorders

- Multidisciplinary Team with Renowned Specialist Expertise
 - Neurologists
 - Neuropsychologists
 - Geriatric Psychiatrist
 - Geriatrician
 - Nurse Practitioner
 - Social Worker
 - Nursing and Medical Assistant Staff
- Fully Dedicated to Care of Aging Patients with Memory Disorders

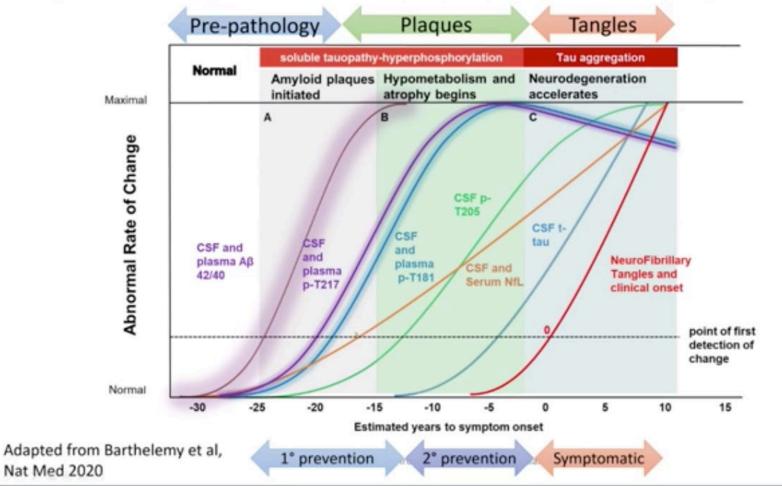

UC San Diego Health Sciences

Healthy Brain


AD Brain

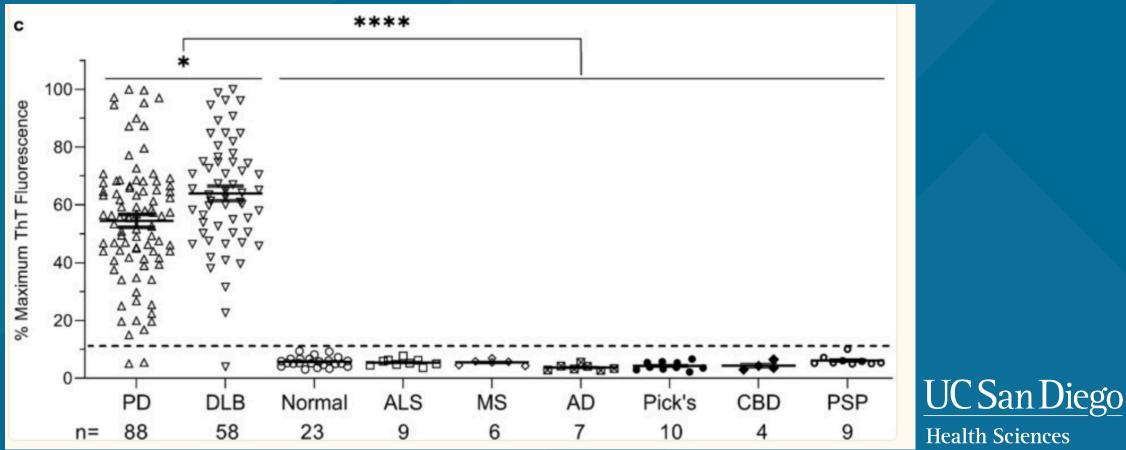

Minimal Amyloid Protein

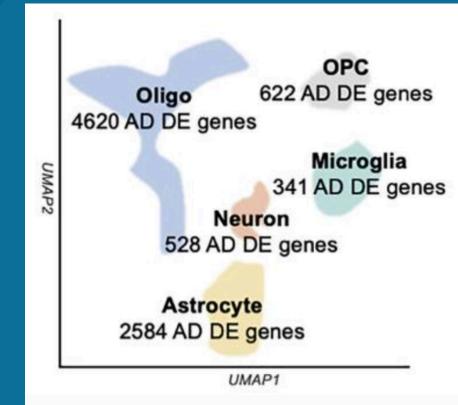
Marked Amyloid Protein


AD and the Brain

3

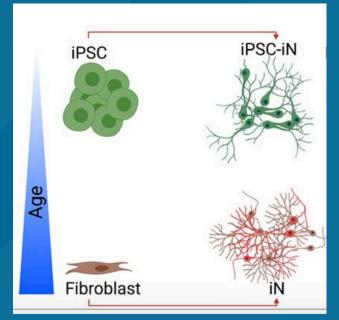
• New Plasma and Biofluid Markers

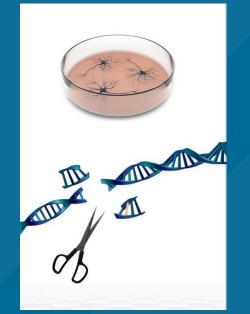

Changes at different stages correlates with amyloid, atrophy, hypometabolism, tangles and clinical stages



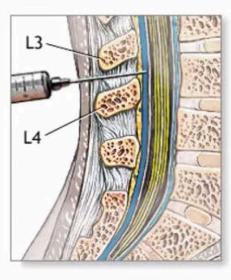
6

• New Plasma and Biofluid Markers to investigate the Heterogeneity of AD CSF- RT-QuIC Synuclein Seeding Assay




- Rapid Increase in Availability of Genetic Tools (and the Computational Power to Process the Data)
 - Ability to assess gene expression across cell types and impact of disease
 - "The Transcriptome"

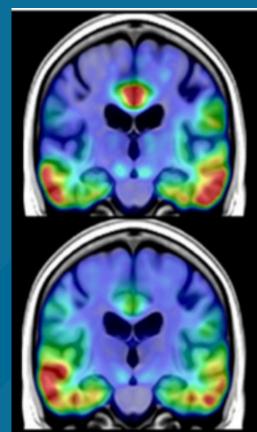
- "Disease in a Dish" Human Cell Models
 - Skin biopsy \rightarrow Induced pluripotent stem cells \rightarrow Variety of human cells
 - Direct transformation of skin fibroblasts into neurons
 - Ability to recapitulate the brain environment
 - Organoids ("Minibrains") with various cell types and vessels



The Promise of the Future

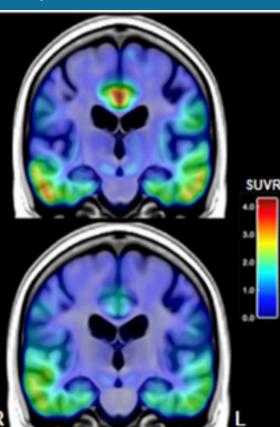
- Rapid Increase in Availability of Genetic Tools
- Anti-sense Oligonucleotides (ASO)
 - Gene-Therapy delivery to the central nervous system

Antisense Drugs can teach us about disease reversibility



- Do not modify DNA directly
- Reversible and dose-dependent
- 'Plastic-like' stability
- Q3 month dosing
- Can permeate entire CNS
- Can be conjugated to 'homing' probes

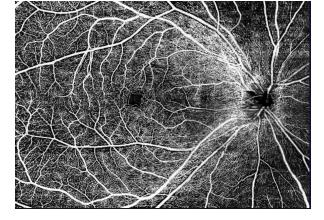
The Promise of the Future


- Rapid Increase in Availability of Genetic Tools
- Anti-sense Oligonucleotides (ASO)
 - Gene-Therapy delivery to the central nervous system

Pt 1

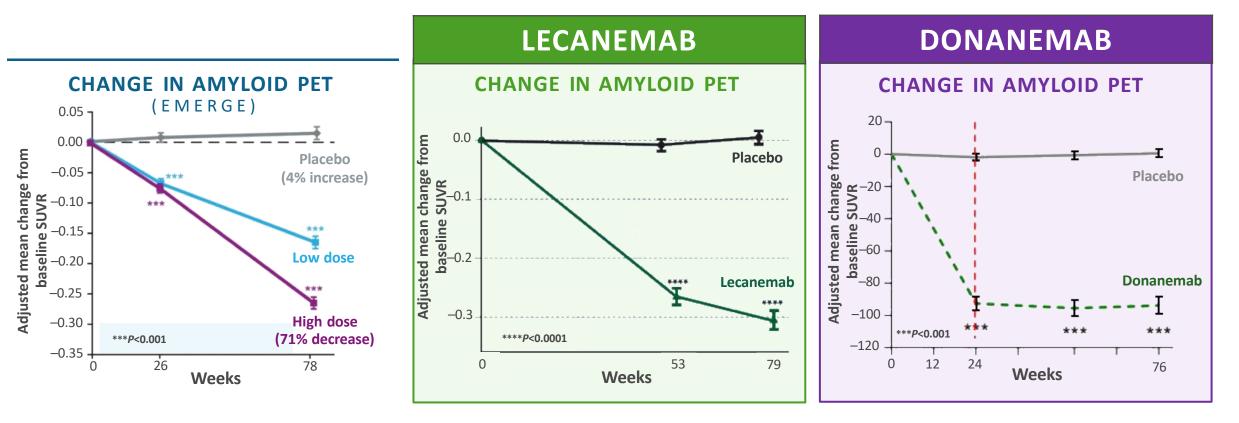
Pt 2

12 Months On Anti-Tau ASO Dosed Every 3 Months



UC San Diego Health Sciences

Phenotyping Goals


At the Shiley-Marcos Alzheimer's Disease Research Center

- C, A, T, N, V, G Characterization
 - C- Cognitive (Neuropsych testing, Clinical Eval)
 - A- Amyloid (CSF Amyloid)
 - T- Tau (CSF Tau; Imaging Tau)
 - N- Neurodegeneration (MRI)
 - V- Vascular (MRI, OCTA?)
 - G- Genetics (PHS)
 - Synuclein Seeding Assay

- Plus CSF, Plasma, and iPSC (capable) Banking for future discovery
- Autopsy for confirmation and brain-tissue-based scientific discovery

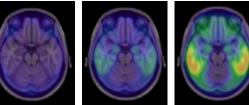
AMYLOID-B-TARGETING DMT EVIDENCE IN AD PATHOLOGY

Significant amyloid clearance demonstrated by all approved and late-stage ATTs

Haeberlein B et al. Two randomized phase 3 studies of aducanumab in early AD. *J Prev Alzheimers Dis.* 2022;9(2):197-210. • Sabbagh M. Key trial design aspects and clinical outcomes of the lecanemab phase 2b (Study 201) trial and open-label extension (OLE) in early AD. *Proc AD/PD* 2022. • Mintun MA et al. Donanemab in early AD. *N Engl J Med.* 2021;384(18):1691-1704. Sevigny J, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016;537(7618):50-56.

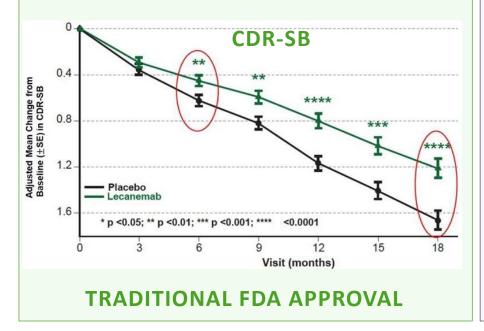
SUVR: standardized uptake value ratio

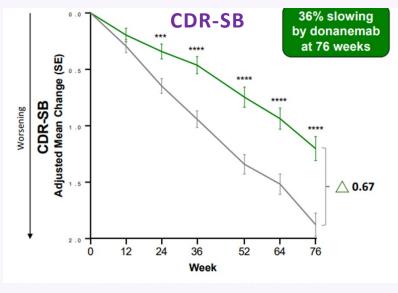
1 year


10 mg kg-

Baseline

Low Intermediate High


CLINICAL OUTCOMES


LECANEMAB (IV BIWEEKLY)

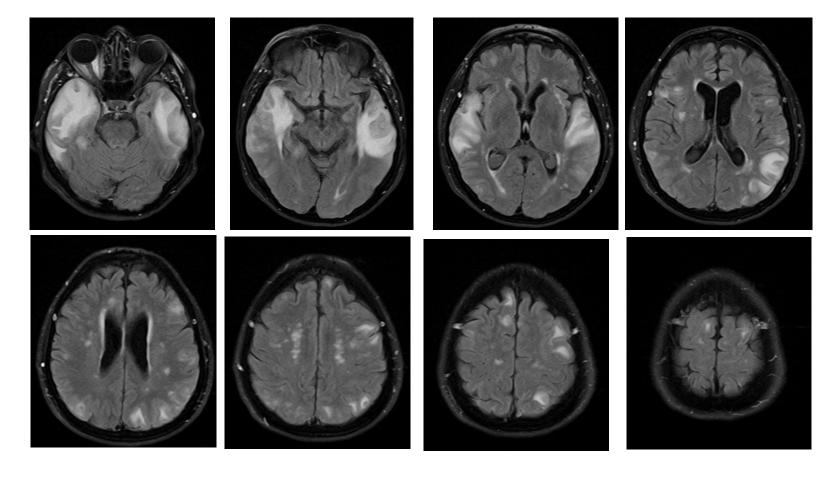
- 27% slowed cognitive decline on CDR-SB at 18 months (P<0.0001)
- Low tau sub-study: 76% no cognitive decline & 60% improved at 18 mo

DONANEMAB (IV MONTHLY)

- 36% slowed cognitive decline on CDR-SB at 18 months (low/medium tau)
- 47% had no progression at 1 year

UNDER REGULATORY REVIEW

Haeberlein B, et al. Two Randomized Phase 3 Studies of Aducanumab in Early AD. J Prev Alzheimers Dis. 2022;9(2):197-210. van Dyck C. A study to confirm safety and efficacy of lecanemab in participants with early AD (Clarity AD). Presented at CTAD 2022, San Francisco, CA. Sims JR, et al. Donanemab in Early Symptomatic AD: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA. 2023;330(6):512–527. Eisia Inc. Lecanemab for Early AD: Long-Term Outcomes, Predictive Biomarkers and Novel Subcutaneous Administration. Late Breaking Symposium 4; Presented at CTAD 2023, Stockholm, Sweden.

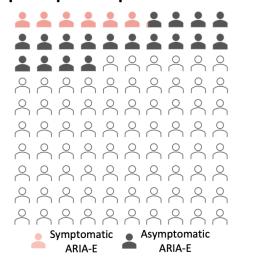


Imaging in the Era of AD Disease-Modifying Therapeutics

- New Anti-Amyloid Monoclonal Antibodies
 - "Up to 40%" slowing of disease progression
 - Brain amyloid levels normalized
 - Significant risk of brain swelling and bleeding
 - Requires frequent MRI-based monitoring
 - Especially during first 6 months of treatment initiation

Week	0	4	12	24	52	76
MRI	\star	\star	*	*	*	*
Amyloid PET scan	\star			*	*	\star
Tau PET scan	\star					\star

Amyloid Related Imaging Abnormality – Edema/Effusion


Amyloid Related Imaging Abnormality – Hemosiderin/Blood Products

Higher Risk in APOE4 Carriers

ARIA by APOE Status % ^{a,b}	Placebo	Donanemab
ARIA-E		
Non-carrier	0.8%	15.7%
Heterozygous carrier	1.9%	22.8%
Homozygous carrier	3.4%	40.6%
ARIA-H ^c		
Non-carrier	11.2%	18.8%
Heterozygous carrier	12.0%	32.3%
Homozygous carrier	20.5%	50.3%

24% of donanemab-treated participants experienced ARIA-E

INITIAL REFERRAL: PRE-THERAPY WHAT THE NEUROLOGIST IS LOOKING FOR

INCLUSION FACTORS

Evidence of amyloid (imaging or fluid)

MRI within 12 months of treatment initiation

✓ Patient is eligible and willing to receive multiple MRIs

EXCLUSION FACTORS

X Acute or subacute hemorrhage or infarction

X Extensive existing cerebrovascular disease

X Excessive ARIA-H risk

X Intraparenchymal mass or inflammatory lesion

Helpful to have bidirectional communication about likelihood/evidence the patient is or will be uncomfortable or uncooperative during MRIs

ARIA severity: Influence on Clinical Management

ARIA Type	Radiographic Severity			
	Mild	Moderate	Severe	
ARIA-E (edema)	FLAIR hyperintensity confined to sulcus and/or cortex/subcortex white matter in one location <5 cm	FLAIR hyperintensity 5 to 10 cm in single greatest dimension, or more than 1 site of involvement, each measuring <10 cm	FLAIR hyperintensity measuring >10 cm with associated gyral swelling and sulcal effacement. One or more separate/independent sites of involvement may be noted.	
ARIA-H: Micro hemorrhage	≤ 4 new incident microhemorrhages	5 to 9 new incident microhemorrhage	10 or more microhemorrhages	
ARIA-H Superficial siderosis	1 focal area of superficial siderosis	2 focal areas of superficial siderosis	>2 focal areas of superficial siderosis	
ARIA-H:				
Macro hemorrhage			≥ 1 macro hemorrhage(s)	

ARIA severity: Influence on Clinical Management

	Radiographic Severity				
Clinical Symptom Severity	Mild	Moderate	Sev	ere	
	ARIA-E & H	ARIA-E & H	ARIA-E	ARIA-H or Macrohemorrhage	
Asymptomatic	<u>Continue Dosing</u> with increased surveillance	<u>Suspend Dosing</u> with increased surveillance. Once ARIA-E is resolved <u>AND</u> ARIA-H is stable, the patient may resume dosing at the same dose.		<u>Permanently Discontinue</u> <u>Dosing</u> with increased surveillance	
Mild to Moderate					
Severe†	<u>Note:</u> In the most severe s	symptomatic ARIA, hig	h-dose corticosteroid therapy sho	uld be considered	

[†] "Severe" ARIA symptoms will be defined as symptoms that are attributable to radiographically confirmed ARIA and involve seizure, require hospitalization, cause incapacitation, increase risk of permanent deficits, and/or significantly impact a patient's activities of daily living.

Cross-Specialty Coordination in Safety Monitoring

- Across patients and timepoints
 - Seek imaging protocol consistency, trained radiologists, standardization of reporting
- Avoid switching across scanners and sequences
- Automation tools may increase standardization and extend a base level of quality across rural, urban, academic, and underserved practices

Cross-Specialty Assessment of Amyloid Removal and Disease Progression

- Cessation of Therapy
 - Confirmed removal of amyloid may guide decision
 - Measurement of disease progression
 - clinical and imaging assessment
 - potential to unmask other disease processes in the absence of amyloid
 - Repeated imaging may lend opportunity for quantitative longitudinal tracking of atrophy rate and lesion resolution
 - Motion and positioning resilient cross-study registration

Ambulatory and Emergency Department Workflow

- Emergency Care Impacts
 - Challenge posed by increased need for urgent MRI for otherwise benign complaint
 - Headache in a long-term headache sufferer
 - Confusion in a patient with diagnosed cognitive impairment
 - Dizziness
 - Alteration of risk-benefit of anticoagulants and thrombolytics across a range of thromboembolic diseases
 - Radical change for acute stroke emergency care pathway

Ambulatory and Emergency Department Workflow

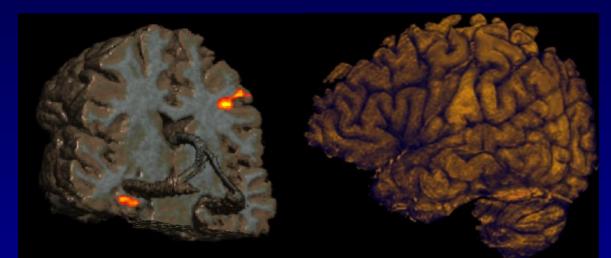
- Ambulatory Care Impacts
 - Patient flow increase
 - Practices need to accommodate demand for regular and timely scheduled MRI
 - Opportunity to track trajectory
 - Improved understanding of ARIA risk across populations
- New trials may reveal improved safety profile in earliest phases of disease and mitigate ARIA concerns.

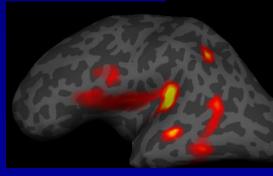
The Promise of the Future

- We are on the Road to Neurotherapeutics in Brain Aging
 - Biomarker-based improvements in diagnosis and predictive prognosis
 - Reveals heterogeneity and personalized impacts of aging
 - Individualized therapies and approaches will clearly be needed
 - Progress enabled through tremendous advances in neurosciences research
 - Bolstered by creative use of genetic tools and big data science
 - Highlights the value of bridging clinicians and researchers
 - Modular gene- and RNA-based therapies show particular new promise
 - Administrative infrastructure for safety/ethics/regulatory navigation is needed

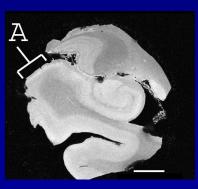
Health Sciences

UC San Diego


THANK YOU FOR YOUR PARTICIPATION


• We couldn't do this without you

- Tell your friends
- Stay involved
 - Join research studies as possible
 - Help us understand new markers and models (which may involve our collection of skin and/or blood samples)
- We are NOW increasing biomarker result feedback between Participant $\leftarrow \rightarrow$ Center



Thank You

James Brewer, M.D., Ph.D. UCSD Shiley Marcos ADRC The UCSD Human Memory Laboratory

