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The reinforcing and motivational aspects of food are tied to the

release of the dopamine in the mesolimbic system (ML). Free

fatty acids from triglyceride (TG)-rich particles are released

upon action of TG-lipases found at high levels in peripheral

oxidative tissue (muscle, heart), but also in the ML. This

suggests that local TG-hydrolysis in the ML might regulate food

seeking and reward. Indeed, evidence now suggests that

dietary TG directly target the ML to regulate amphetamine-

induced locomotion and reward seeking behavior. Though the

cellular mechanisms of TG action are unresolved, TG act in part

through ML lipoprotein lipase, upstream of dopamine

2 receptor (D2R), and show desensitization in conditions of

chronically elevated plasma TG as occur in obesity. TG sensing

in the ML therefore represents a new mechanism by which

chronic consumption of dietary fat might lead to adaptations in

the ML and dysregulated feeding behaviors.
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Introduction
The modern food environment is characterized by a

radical increase in calorie-rich food as well as ubiquitous

reminders of food palatability and accessibility. Hence,
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environmental variables that influence the energy bal-

ance equation have undergone a drastic change in recent

human history, in which the energy cost required for

survival is often far exceeded by energy intake. This

statement of fact is instrumental in the worldwide

spreading of pathologies related to overfeeding including

diabetes, obesity, cardiovascular disease and dyslipide-

mia — a constellation of pathophysiologies referred to as

metabolic syndrome [1].

Appropriate energy homeostasis is reached when energy

intake and demands equilibrate around a defined meta-

bolic set-point. Millennia of evolution have shaped a

highly responsive system that integrates the various sig-

nals of hunger and satiety through a complex and redun-

dant interplay of neural circuitry dedicated to long-term

energy homeostasis. In the central nervous system (CNS)

the hypothalamic–brainstem axis has been identified as a

critical regulator of energy balance. Circulating energy-

related signals such as leptin, ghrelin, insulin, as well as

nutrients are detected by and alter the activity of discrete

neuronal populations that in turn engage neuroendocrine,

peripheral nervous, and ultimately behavioral systems to

adapt nutrient intake to energy demands (Figure 1). This

hypothalamus–brainstem system to regulate feeding and

metabolism around a set point is therefore referred to as

‘homeostatic’ [2,3]. The complex behavioral sequence

that leads to food intake rely on hierarchical integrative

processes encoding motivation, reward, habit, emotional-

ity, and memory that are influenced by nutritional status

and diverse hypothalamic and extrahypothalamic brain

networks. Key among these are mesolimbic (ML) circuits,

where the release of dopamine (DA) has been extensively

shown to encode the reinforcing and motivational prop-

erties of high-fat and high-sugar (HFHS) foods [4,5]. In

particular, midbrain projections from DA neurons of the

ventral tegmental area (VTA) to the nucleus accumbens

(NAc) represent a principal neural substrate upon which

drugs of abuse exert their actions; and thus the ML is

often referred to as the brain ‘reward circuit’. It is now

well established that the ML is also a target for energy-

related signals such as leptin, ghrelin, and insulin [6–9��].

Both the homeostatic and reward circuitries represent

redundant yet complementary and interacting neural

substrates participating in the control of energy balance

under physiological conditions; but maladaptations in

these circuits can be both a consequence of and contrib-

ute to nutrient overload [10–13]. Indeed, numerous lines
www.sciencedirect.com
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Figure 1
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Peripheral signals regulating feeding. Central integration of peripheral

nervous and hormonal inputs that regulate energy balance. Gut-

derived nervous and circulating factors convey a satiety signal and

include vagal inputs from stomach or digestive tracts as well as

secreted peptides such as cholecystokinin (CCK), PYY3–36, or

glucagon-like peptide 1 (GLP-1). Ghrelin is secreted primarily by the

stomach and positively regulates feeding while insulin or leptin act as

long-term satiety factors. Ghrelin, leptin, and insulin have targets in the

hypothalamus as well as the reward circuitry. Dietary lipids are

esterified into triglycerides (TG) and packaged in nascent chylomicron

(CM) at the level of the gut, secreted first in to the lymphatic system,

and then the bloodstream. TG-rich CM gradually lose their lipid

content upon action of tissue lipoprotein lipase (LPL) and ultimately

recaptured as remnant CM by the liver. In the process CM exchange

their native Apolipoprotein B48 (ApoB48) component for the

apolipoprotein E (ApoE). Very-low density lipoprotein (VLDL), produced

by the liver, represent another source of TG-rich particles which, upon

action of LPL, give rise to intermediate-density (IDL) and low-density

(LDL) lipoproteins. LPL is also expressed in the brain in both

hypothalamic structures and ML structures including the prefrontal

cortex (PFC), the hippocampus, ventral tegmental area, and

throughout dorsal and ventral striatum. TG hydrolysis in the NAc

regulates the rewarding and motivational aspects of food intake and

could be an important mechanism linking dietary input with reward.
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of evidence have promoted the concept that compulsive/

dysregulated food intake, as can occur in obesity, might

be the result of adaptive responses of homeostatic and

reward circuits in response to chronically increased expo-

sure to calorie-dense food in susceptible individuals

[10,14]. This review will focus particularly on recent

developments in the field that point toward a direct

connection between neural sensing of circulating lipids

from nutritional origin and the function of the ML in the

regulation of reward seeking.

High fat diet, obesity and the consequences
on dopamine signaling
Hypothalamic structures lie close to circumventricular

organs (CVO) and are regarded as a primary neural

structure affected by nutrient overload [2]. Molecular

underpinnings linking nutrient overconsumption and al-

tered neural function involve hypothalamic FFA metab-

olism [15], nutrient-induced endoplasmic reticulum (ER)

stress [16–19], inflammatory processes [20], or resistance

to energy-related signals [18,21–23].

Besides the hypothalamus, there is now clear evidence

that the DA signaling is also directly affected by high-fat

feeding and obesity in both human and rodent. For

instance, the abundance of dopamine D2 receptor

(D2R) in the striatum is inversely correlated to body

weight [11,24,25] and obese rats were shown to display

compulsive eating as measured by palatable food con-

sumption despite aversive conditioned stimulus [26].

Genetic silencing of D2R in the dorsal striatum acceler-

ates the development of a reward-deficit state and com-

pulsive eating in rats exposed to high fat food [26]. In rats,

individual variation in motivational response to food-

related cues was also shown to predict body-weight gain

and willingness to work for food rewards [27��]. Interest-

ingly increased craving was associated with a rapid change

in dorsal striatum DA signaling but not opioid signaling in

the NAc [27��].

In human, striatal D2R availability was initially found to

be significantly lower in obese individuals and negatively

correlated with body-mass index (BMI) [24,28]. BOLD

signal assessed by brain functional Magnetic Resonance

Imaging (fMRI) in striatal structures was decreased in

obese versus lean subject [29], suggesting a defect in

striatal neuron activity [29]. On the other hand, obesity

was associated with a greater BOLD response to food-

related cues in brain regions associated with reward and

motivation [12,28–30]. These data suggest that striatal

neurons are underactive at baseline in obese individuals

but show sensitized responses to food signals. A recent

study implicates DA signaling in this process; using

positron emission tomography (PET) to quantify striatal

D2R-like binding potential (D2BP) identified an associa-

tion between striatal DA binding in obesity. Body mass

index (BMI) was negatively correlated with D2BP in the
Current Opinion in Behavioral Sciences 2016, 9:126–135
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ventral striatum (i.e., NAc) whereas in the dorsal striatum,

both BMI and habitual/opportunistic eating behavior

positively correlated with D2BP [31��]. It remains unclear

whether altered DA signaling is a cause or a consequence

of body weight gain, these studies draw a complex picture

of DA signaling defects in obesity, where regionally

distinct changes might create a state of both reward deficit

and heightened habitual responding [31��].

Importantly, several studies highlight the fact that intrin-

sic defects in ML function developed independently of

body weight gain and — although magnified by obesity

states — might primarily be the result of dietary fat

exposure. Although magnitude and direction of these

changes sometimes vary according to diet, strain or ana-

tomical region; exposure to high fat diet, independent of

body weight gain, can promote change in D2R abun-

dance, DA turn-over rate, DA transporter (DAT) func-

tion, response to amphetamines, and operant responding

for food reward [32,33]. Animals exposed to a restricted

amount of calories from high-fat but not high-sugar diet

exhibit decreased attention and increased impulsivity as

assessed by 5-choice serial reaction task (5CSRT) [34��].
Limited exposure to a fat source also triggers binge-like

eating behavior and increased sensitivity of ML activity,

interestingly mice lacking ghrelin-receptor failed to esca-

late palatable food intake suggesting that energy-related

signal such as ghrelin play also a role in ML response to

energy-dense food [35]. A recent study demonstrated that

not all fat source are equivalent in their ability to temper

with ML activity. Indeed exposure to amount of saturated

but not unsaturated fat leads to change in D1R and DAT

abundance in the ML [36��].

Among the different consequence of high fat feeding,

special attention was recently drawn to circulating TG

metabolism as strong predictor of compulsive overeating

propensy. Sprague-Dawley rats can be subdivided into

obesity prone (OP) and resistant (OR) based on metabolic

features and body weight gain during a short 5-day high

fat challenge; among which altered circulating TG, fat

partitioning characterized by increased Lipoprotein li-

pase (LPL) activity in the adipose tissue, and decreased

muscle lipid transport were identified as signatures of OP

rats [37]. Plasma TG levels after a meal were a strong

predictor of future body weight gain in OP rats, that is

larger TG excursion after a meal (high-TG responders)

correlated with a propensity to overeat [38]. In OP high-

TG responders, extracellular DA levels assessed by

microdialysis in the NAc was reduced at both basal

condition and in response to high fat feeding or peripheral

injection of a fat emulsion (intralipid). Moreover, when

orosensory reward was bypassed through systemic admin-

istration, TG emulsion but not sucrose led to increased

DA release in the NAc as measured by microdialysis [39].

Along the same line, cognitive impairment in obese mice

was improved by pharmacologically lowering plasma TG,
Current Opinion in Behavioral Sciences 2016, 9:126–135 
while central injection of TG impaired cognition in lean

mice [40].

Finally, a recent study in humans using fMRI demon-

strated that plasma TG and ghrelin correlated with the

magnitude of whole brain BOLD response to food re-

ward. The larger post-prandial decrease in ghrelin or

increase in TG was associated with a reduced BOLD

response to palatable milkshake in limbic circuitry in-

cluding the midbrain, pallidum, amygdala medial orbito-

frontal cortex and hippocampus [41��]. Importantly,

circulating albumin-bound FFA, glucose, or insulin did

not correlate with brain responses to food reward.

Altogether these results suggest that among the nutrients

that could affect brain function, dietary TG, indepen-

dently of other energy-related signals such as insulin,

glucose or FFA),could act on neural substrates regulating

cognition and reward. This specificity might originate

from both the physiology and biochemistry of meal-

related TG-particle appearance and metabolism both at

peripheral and central level.

Triglycerides or free-fatty-acids: a question of
timing?
Lipids are the major component of the brain [42] and

originate from both endogenous production and dietary

inputs [43]. Plasma lipids can be found as free-fatty acids

(FFA) bound to albumin and triglycerides (TG)-rich

lipoproteins [44]. Lipoproteins are complex associations

of apolipoproteins and phospholipids that create a polar

environment for lipid transport. LPL expressed in pe-

ripheral tissues catalyze the hydrolysis of TG from TG-

rich particles such as very-low-density lipoprotein

(VLDL) and gut-borne chylomicron (CM) to give rise

to particles with reduced lipid content such as high

density lipoprotein (HDL) (Figure 1).

But how do lipids get into the brain? Tracing studies

using positron emission tomography (PET) coupled with

radiolabelled fatty acids injected peripherally have shown

dynamic incorporation of arachidonic or palmitic acids in

the brain [43,45,46]. Importantly, metabolic syndrome

was shown to be associated with an increase in whole

brain FFA uptake-and especially an 88% increase in

hypothalamic FFA uptake [47]. Among FFA, essential

polyunsaturated fatty acids (PUFA) can cross the blood-

brain barrier (BBB) through mechanisms that were poorly

defined until the very recent discovery of Mfsd2a (major

facilitator superfamily domain-containing 2a) as the main

carrier for absorption of the essential fatty acids docosa-

hexaenoic acid (DHA)in the brain [48�]. While free DHA

was initially believed to be the major source of brain DHA

[49], this recent study shows that DHA, together with

long chain fatty acids (LCFA) are transported through

Mfsd2a in the form of lysophosphatidylcholine (LPC)

but not FFA. This result highlights the complex and
www.sciencedirect.com
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redundant mechanisms for brain LCFA and DHA ho-

meostasis [48�].

Circulating apolipoproteins range in size from less than

10 nm for HDL, 20–30 nm for LDL, 30–40 nm for IDL,

and 5–80 nm for VLDL and CM. It is known that some

small HDL can cross the BBB [44,50,51], but the question

of brain-accessibility to larger TG-rich particles such as

VLDL or CM is still debated based on previous tracer

studies [44] and on the assumption that the brain is

devoid of a lymphatic system. After a meal lipids are

packaged in CM, secreted into the lymphatic system, and

then to the general circulation where large particles would

have to cross the BBB at the level of fenestrated capillar-

ies in order to access the CNS. However the recent

discovery of a lymphatic system in the mouse brain

suggests a new route by which TG-rich particles may

be available for cerebrospinal-fluid (CSF) exchange [52].

Indeed, brain cells express high levels of several lipopro-

tein receptors such as the VLDLR, LDLR, oxidized

HDL receptors, and accessory proteins such as LDL

receptor-related protein (LRP) [44]. These receptors

bind selective apolipoprotein components and genetic

and pharmacological approaches have highlighted the

role for apolipoprotein signaling in brain development

and function including learning and memory [53] and

synaptic plasticity [54]. For instance apolipoprotein E,

present in circulating chylomicrons and IDL, binds to

LDLR and is recognized as a major genetic risk factor for

common forms of late-onset Alzheimer disease (AD) [55],

while brain-specific overexpression of LDLR enhances

b-amyloid clearance and may be protective in AD [56].

Moreover the brain also produces apolipoproteins [44],

primarily synthesized by astrocytes, and particles approx-

imating the size and density of HDL can be measured in

CSF [51].

Altogether these observations suggest that both endoge-

nously (astrocyte produced) and peripherally generated

(postprandial) lipoprotein particles can affect brain func-

tion. The precise mechanisms by which lipoprotein sig-

naling is initiated in the brain is unclear and could

potentially involve canonical cascades, local lipid deliv-

ery, or/and changes in cell metabolism which in turn

might modulate neuron activity.

TG-lipases which catalyze the hydrolysis of TG into free

fatty acids and mono-glycerol or diacyl-glycerol are abun-

dantly expressed in the brain and particularly enriched in

the ML [44,57–59]. Accumulating evidence suggests that

brain lipases act upon TG to mediate lipid delivery within

discrete brain nuclei with important functional conse-

quences [60�,61,62��]. Among these the LPL has been

best studied with regard to its role in energy balance [59].

Pan neuronal LPL knock out animals (NEXLPL�/�)

display altered brain FFA and PUFA levels, develop late
www.sciencedirect.com 
onset obesity [63], and show age-related declines in

cognitive function and increases in anxiety [60�]. More

restricted gain or loss of function approaches have allowed

for more precise determinations of the role of LPL in sub-

structures of the brain. For example, hippocampal LPL

regulates energy expenditure and autonomic tone

through synthesis along the ceramide-based signaling

pathway [64��].

While a role for lipases during brain development could

potentially account for the deficits observed in LPL

knock out models, their continued expression in discrete

nuclei in adulthood makes it tempting to speculate that

brain TG-lipases regulate local TG breakdown and

LCFA availability. In that regard, although TG and

LCFAs are both circulating lipid species, their appear-

ance in the blood stream occur at opposite time points

with respect to feeding. TG-rich particles accumulate

after a meal; whereas LCFA are released by fasting-

induced adipose lipolysis and are thus elevated during

periods of food abstinence [65]. In addition, while LCFA

can readily be transported through fatty-acid transporters

abundant in most brain structures, TG must first be

broken-down by TG-lipases severely limiting central

availability. Hence, brain structures equipped with

TG-lipases might be uniquely disposed to detect post-

prandial changes in dietary lipids. Indeed, the presence of

LPL in the ML strongly suggests a role for TG sensing in

post-prandial TG-mediated changes in reward valence. In

that view TG breakdown in the ML and downstream

adaptive changes occurring once FFA are released could

directly affect DA or other ML signaling pathways to

regulate reward-seeking behavior.

Triglycerides sensing in the reward ML
system: bridging dietary inputs and reward
We have developed a model in which TG emulsion

(intralipidTM) is perfused through the carotid artery in

the direction of the brain at a rate and concentration that

mimics the post-prandial increase in TG and that does not

affect systemic lipids. Using this model we found that TG

can act directly in the brain to regulate locomotor activity,

food preference, and food seeking behaviors. Brain TG

delivery dampened operant responding for rewards on a

progressive ratio schedule, and preference for a palatable

HFHS food in a food choice paradigm. Direct brain TG

delivery decreased by �50% nocturnal locomotor activity

and amphetamine-induced locomotion. TG delivery also

opposed D2R agonist-induced locomotion, suggesting a

TG-evoked modulation of the dopaminergic circuitry.

Selective knock-down of LPL in the NAc had the oppo-

site consequences — leading to increased motivation to

work for food rewards and increased consumption of

palatable diet [62��].

Plasma TG transiently increases after a meal [65]. How-

ever, plasma TG is chronically elevated in obesity and is
Current Opinion in Behavioral Sciences 2016, 9:126–135



130 Diet, behavior and brain function
obviously not associated with decreased tropism for calo-

rie-dense food, suggesting adaptive mechanisms occur. In

order to mimic the brains response to chronic hypertri-

glyceridemia we used sustained TG perfusion in lean

animals and compared with a model of diet-induced

obesity.

We modeled hypertriglyceridemia using a model of diet-

induced obesity or with chronic (7-days) TG perfusion

toward the brain that increases brain TG sensing without

effect on plasma TG levels. Both these treatments led to

behavior-specific desensitization, in which central TG

sensing was no longer able to modulate tropism for

palatable food but still led to a decrease in locomotor

activity. This adaptive mechanism, induced by chronic

elevations in circulating TG or brain TG sensing, may

explain how sustained consumption of high-fat foods

overwhelm regulatory systems to promote weight gain.

Central TG sensing could directly operate the acute

decrease in locomotor activity that precedes metabolic

changes when animals are presented with a western diet

[66]. When brain TG sensing occurs acutely it might have

a beneficial (or homeostatic) effect to reduce the desire

for food reward. But when chronically elevated,

TG-sensing mechanisms may desensitize or lead to

compensatory adaptations such that reductions in physi-

cal activity persist, but motivation for high fat food

becomes resistant to TG-mediated homeostatic control.

The combination of both reduced physical activity and

sustained motivation for high fat foods will inevitably

lead to body weight gain.

These data support the concept that local TG hydrolysis

in brain structures equipped with TG processing

enzymes might have differential impacts. Circulating

albumin-bound LCFAs may principally act in the hypo-

thalamus and function to regulate feeding and glucose

production [15] — specifically in time of scarcity when

adipose lipolysis release of FFA is high-whereas LPL-

mediated hydrolysis of TG-particles accumulated after a

meal in ML structures might participate in the encoding

of incentive and motivational properties of food. Acute

exposure to TG — in the general framework of a meal —

will decrease both rewarding and motivational aspect of

food while chronic exposure would lead to desensitization

and uncontrolled feeding behavior [62��].

Molecular basis for ML lipid sensing and
source of vulnerability?
In the hypothalamus the existence of lipid sensing was

pioneered by Oomura and colleagues [67] and extensively

studied during the last decade [22]. LCFA metabolisms

were shown to regulate neuronal activity, autonomic

control of insulin release, food intake, and liver glucose

production [15,22,68]. Hypothalamic sensing of LCFA

encompasses several cellular mechanisms including di-

rect entry into the tricarboxylic acid cycle (TCA cycle),
Current Opinion in Behavioral Sciences 2016, 9:126–135 
amino-acid mediated activation of mTOR [69], autophagy,

inflammation through nuclear enhancer of kappa-light-

chain-enhancer of activated B cells (IKK/NF-kB)-depen-

dent pathways [3,18,70,71], increased mitochondrial lipid

beta-oxidation [68,72], adaptations in mitochondrial respi-

ration and radical oxygen species (ROS) scavenging [73],

accumulation of lipid metabolites such as acetyl-CoA and

malonyl-CoA [15], direct modulation of protein-kinase C

activity [74,75], lipid-mediated activation of membrane

receptors, eicosanoids-dependent signaling [46], and lip-

id-activated transcriptional adaptations [76,77].

Although high calorie food is virtually ubiquitous, uncon-

trolled feeding and obesity does not affect every individ-

ual suggesting that the modern food environment might

directly interact with genetic or epigenetic elements

of susceptibility. The TaqIA A1 allele is an excellent

candidate in that regard. Affecting 30–40% of the popu-

lation, homozygous dosage of the A1 allele correlates

with a 30�40% reduction of striatal D2R abundance

[78,79��,80–82] and is strongly associated with addiction

and compulsive behavior, impacting both drugs of abuse

as well as feeding [13,28]. The A1 allele results from a

single-nucleotide polymorphism (SNP) located at the

gene that encodes Ankyrin repeat and kinase domain

containing 1 (ANKK1) near the gene encoding D2R [83].

ANKK1 is a receptor-interacting protein (RIP) kinase: a

structurally related family of factors that integrates vari-

ous stimuli including inflammation, innate immune re-

sponse downstream of Tumor-necrosis factor alpha

(TNFa-R1) receptor and Toll-like receptor (TLR),

and converge upon c-jun N-terminal kinase (JNK),

MAPK activity or NF-kB [84] signaling pathways.

In silico analysis of human protein-protein interaction

reveals that among the �30 predicted partners for human

ANKK1 [85] half are found in the NF-k�, JNK or MAPK

pathway. In the brain ANKK1 is uniquely expressed in

astrocytes [83]. Astrocytes integrate various metabolic

signals to coordinate neuronal activity and are direct

targets for lipids; especially saturated fat-induced inflam-

matory responses and ER-stress mediated through TLR

and IKK/NF-kB signaling [86��,87].

How astrocyte ANKK1 activity could ultimately relate to

the reduced D2R abundance is still an open question but,

here again, fatty acid metabolism might provide several

potential mechanisms. For example the D2R and ANKK1

promoters possess NF-kB cis regulatory elements [83,88];

and lipid-derived prostaglandins are powerful inducers of

Neural Growth Factor (NGF) secretion by astrocytes,

NGF in turn has been shown to directly regulate neuronal

D2R mRNA transcription through the NF-kB signaling

pathway [89].

Finally, while increased feeding as a consequence of

acute high fat diet exposure was recently shown to
www.sciencedirect.com
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Figure 2
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involve activation of astrocytic NF-kB [86��], adaptations

occurring upon long-term exposure to high-fat diet might

involve a third partner of the triad: the peroxisome

proliferated activated receptors delta (PPARs). PPARd

belongs to a family of ligand-activated transcription

factors, involved in a variety of cellular metabolic adapta-

tions, which primarily respond to LCFA and prostaglan-

din. PPARd has also emerged as an important regulator of

the ML. For example, activation of PPARd by LCFA or

synthetic agonist decreases opioid synthesis in forebrain

neurons [90] and protects from methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-induced loss of DA neurons.

Striatal PPARd is directly regulated by TLR/NF-kB

pathway [91] and a PPAR responsive element exists in

the ANKK1 promoter [83].

LCFA signaling in the ML could potentially be integrat-

ed at the level of the tripartite synapse composed of

striatal DA neurons and astrocytes engaged in a coordi-

nated activation of the ANKK1/NF-kB/PPARs triad to

effect the expression or function of D2R (Figure 2). While

the ML response to short term high fat exposure could be

mediated by a NF-kB/NGF action on D2R, PPARd

activation by LCFA could lead to long-term transcrip-

tional adaptations in striatal structures with chronic high

fat consumption. In that view, altered lipid sensing in the

ML along with heightened exposure to food-related

cues — both consequences of the modern food environ-

ment — would reveal and magnify the consequence of

the ANKK1 polymorphism on compulsive behavior.

Conclusion
How TG enter the brain and affect central function is still

unclear, as are the molecular underpinnings by which

local FFA delivery via TG hydrolysis affects neural

responses and reward. However both human and rodent

studies provide direct and indirect evidence for an action

of dietary TG on reward and motivation. TG hydrolyzed

locally in the striatum could inhibit locomotor activity and

transiently reduce the incentive properties of calorie-rich

HFHS foods. However, in the face of chronic elevation in

plasma TG, a hallmark of the modern food environment

and obesity, the homeostatic mechanisms that normally

decrease the hedonic impact of HFHS foods fails [62��].
In that view, a positive feedback loop whereby chronical-

ly high plasma TG, such as occur in obesity, will damage

homeostatic mechanisms that limit food intake resulting

in altered reward encoding, uncontrolled caloric con-

sumption, and reduced physical activity. Such a mecha-

nism will inevitably drive body weight gain. Further

studies will be required to understand the physiology

and molecular mechanism of central TG sensing and if/

how inheritable susceptibility loci such as the TaqA1

allele could exacerbate the adaptive mechanisms associ-

ated with brain TG sensing and, ultimately, the down-

ward spiral that drives compulsive eating dissociated from

metabolic needs.
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